a2 United States Patent

Surti

US009053040B2

US 9,053,040 B2
*Jun. 9, 2015

(10) Patent No.:
(45) Date of Patent:

(54) FILTERING MECHANISM FOR RENDER
TARGET LINE MODIFICATION

(71) Applicant: Intel Corporation, Santa Clara, CA
(US)
(72) Inventor: Prasoonkumar Surti, Folsom, CA (US)
(73) Assignee: Intel Corporation, Santa Clara, CA
(US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
This patent is subject to a terminal dis-
claimer.
(21) Appl. No.: 14/471,106
(22) Filed: Aug. 28,2014
(65) Prior Publication Data
US 2015/0029203 A1l Jan. 29, 2015
Related U.S. Application Data
(63) Continuation of application No. 13/004,950, filed on
Jan. 12, 2011, now Pat. No. 8,836,712.
(51) Imt.ClL
G09G 5/36 (2006.01)
GO6T 1/60 (2006.01)
GO6F 12/08 (2006.01)
(52) US.CL
CPC ... GO6F 12/0895 (2013.01); GO6T 1/60

(2013.01); GO6T 2200/28 (2013.01); GO6F
2212/455 (2013.01); GOGF 2212/401 (2013.01)
(58) Field of Classification Search
CPC GO6T 1/60; GO9G 5/36-5/366
USPC 345/530, 557
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,760,804 B2
2004/0257373 Al
2006/0015686 Al*
2010/0231600 Al

7/2010 Ruttenberg et al.
12/2004 Doyle et al.

1/2006 Candler

9/2010 Kaufman

711/119

OTHER PUBLICATIONS

PCT International Search Report and Written Opinion issued in
corresponding PCT/US2011/067954 dated Jun. 25, 2012 (9 pages).

* cited by examiner

Primary Examiner — Jacinta M Crawford
(74) Attorney, Agent, or Firm — Trop, Pruner & Hu, P.C.

(57) ABSTRACT

Modification messages may be filtered to reduce the load on
amessage channel between a render cache and a frame buffer
compression. A group of cache lines may be checked to see
whether both a subspan request hits an unlit bit and a modify
message was already sent. If so, the modification message
may be filtered.

20 Claims, 2 Drawing Sheets

14 /_10
cPU
I I
GM(‘EPJ 120
26
DISPLAY _ L
ENGINE ¥ =22 GPE
B MESSAGE CHANNEL | [RENDER]-28
I'q { 30 CACHE
24 32 L i§ "35
MEMORY INTERFACE
T
i
[MEMGRY CONTROLLER}—34
)
¥
BISPLAT | MEMORY |16
DEVICE_/ ™18
FRAME BUFFER
FRONT BUFFER] |_3g
BACK BUFFER

US 9,053,040 B2

Sheet 1 of 2

Jun. 9, 2015

U.S. Patent

[9l

d344N9 Movd

8¢~ [¥33ang INOWd
4344N9 INVYS
g1~ 7 301A3d
6 —{83TI0UINOO_AHOW3N]
JOVANALNI AYOWII
9189 uoﬁo % wm wm
FHOV
8z—143aN3d [T TaNNvHD FOVSSIN u%_u\
—~ 3dY ¢¢~ | Av1dsIq
92 Ndo
02—+ HOWD
a1-/ 1
NdJ
oT\ Al

U.S. Patent Jun. 9, 2015 Sheet 2 of 2 US 9,053,040 B2

42 y— 40

SUBSPAN
REQUEST HITS

UNLIT BIT
?

[SET FIRST ARRAY |44
46

MODIFY
MESSAGE SENT

TO FBC
?

[SET SECOND ARRAY} 48

BITS
SET IN BOTH

ARRAYS
?

SEND MESSAGE o4

[FILTER MESSAGE V92

FIG. 2

US 9,053,040 B2

1
FILTERING MECHANISM FOR RENDER
TARGET LINE MODIFICATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/004,950, filed on Jan. 12, 2011, which issued
as U.S. Pat. No. 8,836,712 on Sep. 16, 2014.

BACKGROUND

This relates generally to graphics processing and, particu-
larly, to rendering images.

Inrendering, an image is represented by primitives, such as
triangles or other polygons. A render target is established in a
frame buffer. The render target is a destination surface in
memory where render results are written. The render cache is
a cache in which pixel color and depth information is written
prior to being written to memory and where the prior pixel
destination attributes are read in preparation for blending and
depth tests.

Allocation is the process of allocating a cache line in the
render cache. In some cases, the allocation happens for every
2x2 pixel group written from a pixel shader. The group of2x2
pixels is called a subspan. An unlit bit in a subspan is a pixel
that is not enabled in a group of 2x2 pixels.

Typically, in order to save power and improve perfor-
mance, a frame buffer compression technique is used. The
technique relies on tracking unmodified or recently rendered
cache lines in the render cache. The unmodified lines can be
displayed directly from a compressed butfer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic depiction of one embodiment of the
present invention; and
FIG. 2 is a flow chart for one embodiment.

DETAILED DESCRIPTION

In accordance with some embodiments, cache line modi-
fications are communicated to a frame buffer compression
using a narrow interface called a message channel. During
rendering, without any line modification filtering, the mes-
sage channel can be oversubscribed by these modification
messages. However, in some embodiments, line modification
messages that are unnecessary can be filtered or compressed.

Referring to FIG. 1, an architecture for a computer 10 may
include a central processing unit (CPU) 14, coupled to a
graphics memory controller hub (GMCH) 12. The GMCH is
a system memory controller with an integrated graphics
device, called a graphics processing unit (GPU). Of course,
other memory and processor architectures can be utilized and
the one depicted in FIG. 1 is an example only.

The GMCH includes a graphics processing unit 20 which,
in turn, includes a display engine 22. The display engine 22
includes a frame buffer compression 24 which is coupled by
amessage channel 32 to a graphics processing engine 26. The
graphics processing engine may perform the bulk of the
graphics processing in a graphics processor. It includes both
three dimensional immediate fixed function pipelines, a com-
mand streamer unit 36 that feeds them, and other subsystems
that provide computations required by the various graphics
pipelines.

The graphics processing engine 26 may include the render
cache 28. Therender cache is a cache in which pixel colorand

10

15

20

25

30

35

40

45

50

55

60

65

2

depth information is written, prior to being written to
memory, and where prior pixel destination attributes are read
in preparation for blending and depth test.

Thus, the message channel 32 connects the render cache 28
to the frame buffer compression 24. Normally, the render
target is the frame buffer 38. The command streamer 36
manages the use of 3D immediate pipelines by performing
switching between the pipelines and forwarding command
streams to the currently active pipelines.

The graphics processing unit 20 also includes a memory
interface 30 which includes various caches. The memory
interface (MI) 30 interfaces with the memory controller 34 in
the GMCH 12 and with an external memory 16. A portion of
the memory 16 makes up the frame buffer 38. In some
embodiments, the frame buffer may include a front buffer
which holds what is currently being displayed and one or
more back buffers which hold the information that is going to
be displayed and is being rendered ahead of its actual display.
Thus, in multiple frame buffers, there may be several back
buffers, even though only one is depicted in FIG. 1.

The display engine 22 drives the display on the display
device 18, which could be a monitor or a television, as two
examples.

Typically, a render cache sends a message to the frame
buffer compression for each subspan that passes through allo-
cation logic. By sending the modification messages only after
processing some number of lines that include many subspans,
it is possible to filter some of those messages or to compress
them. Thus, in one embodiment, the modification messages
are only sent at 16 line granularity. Messages within those 16
lines that are redundant, since the last compression of the
frame buffer, can be filtered instead of being sent.

To this end, the render cache may include a displayable
buffer to filter modification messages. In order to prevent
allocation stalling, while still allowing the frame buffer com-
pression to stall modification messages, the render cache may
include two distinct types of bits. The first type of bit is an
allocation array of bits that is set by the allocation logic when
it receives a subspan request that hits an unlit bit. The second
set of bits is contained in a message array that is set once the
corresponding modify message has already been sent once in
the cycle to the frame buffer compression. If the correspond-
ing bits in both arrays are already set, then the message to the
frame buffer compression will be filtered in one embodiment.
This allows multiple pending messages to the frame buffer
compression, which messages may be held by the displayable
buffer, while still filtering redundant messages and prevent-
ing allocation stalling because allocation messages can still
be sent as well.

Thus, the allocation and message array bits have four pos-
sible configurations. The allocation array bit may be zero and
the message array bit may be zero when both bits are not set.
No allocation for this 16 line segment was seen since the last
frame buffer compression. Thus, this is a reset. After sending
a clean status to the frame buffer compression, all the loca-
tions in the displayable buffer are reset to this state.

The next possibility is that the corresponding allocation
array bit is one or set and the corresponding message array bit
is zero. This means that a valid allocation was seen for at least
one pixel in the 16 line segment. However, no modification
message has been sent to the frame buffer compression yet.
Bits in this state need to be sent via a modify message so that
filtering is not possible.

The next possibility is that both the array and message bits
are set. Thus, there was a valid allocation seen for at least one
pixel in this 16 line segment and a modify message has
already been sent to the frame buffer compression. There is no

US 9,053,040 B2

3

need to send any more messages for these bits until the next
clean message is sent and this line is modified again. There-
fore, in this case, filtering is used.

The final possibility is that the allocation array bit is zero
and the message array bitis one or set. This is not a valid value
and an error may be generated in some embodiments.

The render cache determines the current line number based
on the y address and y offset in some embodiments. Address
bits [10:4] of the final y address may be used to modify or set
the corresponding bit in the allocation array. This modifica-
tion is marked only when the base address matches the frame
buffer compression base address register, as explained here-
inafter. The render cache makes sure that the modification is
marked only when at least one pixel mask is lit in the allocated
subspan.

The render cache sends modification messages to the frame
buffer compression only when the secondary message array
indicates that a modification is pending. On the pending
modification, the render cache can collapse more modifica-
tions to effectively filter them. The render cache also includes
pending messages to the frame buffer compression as part of
its idle determination for purposes of sending a clean message
to the frame buffer compression.

For purposes of informing the frame buffer compression
that the render data is in memory, the render cache and the
frame buffer compression handle both front buffer rendering
and back buffer rendering in some embodiments. In front
buffer rendering, the rendering is done from the front buffer
and the contents of the front buffer are not cached in some
embodiments. The render cache sends a clean message to the
frame buffer compression where transitioning from a non-
clean to a clean state. The clean state is one in which there are
no dirty lines in the cache and all writes have been posted to
the graphics arbiter of request. Once the clean message is
sent, the render cache invalidates the filter bits and begins
tracking new modifications to the render targets.

Back buffer rendering is the case where the render target is
cached. A flush is needed to send the data to memory. Upon
getting a memory interface (MI) flush, which pushes data out
of the frame buffer, the render cache flushes and informs the
command streamer that a flush has been completed. The
command streamer informs the render cache if the completed
flush is tied to a flush. The render cache masks opportunistic
flush completions in this mode.

The message interface is assumed to be put into the com-
mand streamer. The render cache generates modify and clean
information and provides it to the command streamer. The
command streamer posts these messages to the frame buffer
compression on behalf of the render cache.

Referring to FIG. 2, a sequence is depicted for filtering
modification messages. The sequence 40 begins by determin-
ing if a subspan request hits an unlit bit, as indicated at
diamond 42. If so, the corresponding bit in a first array is set,
as indicated in block 44. The first would be the allocation
array in one embodiment. Next, a check at diamond 46 deter-
mines whether a modified message has already been sent to a
frame buffer compression for the given set of lines. If so, a bit
in the second array is set, as indicated in block 48. The second
array may be the message array in one embodiment.

Finally, a check at diamond 50 determines whether corre-
sponding bits have been set in both arrays. If so, then the
message is filtered, as indicated in block 52 and, otherwise,
the modification message is sent, as indicated in block 54.

In the case of a software implementation, the pertinent
code may be stored in any suitable semiconductor, magnetic,
or optical memory, including the main memory 16 or any
available memory within the graphics processor. Thus, in one

15

25

30

40

45

65

4

embodiment, the code to perform the sequences of FIG. 2
may be stored in a non-transitory machine or computer read-
able medium, such as the memory 16 or the graphics proces-
sor controller hub 12, and may be executed by the processor
14 or the graphics processor 12 in one embodiment.

FIG. 2 isa flow chart. In some embodiments, the sequences
depicted in this flow chart may be implemented in hardware,
software, or firmware. In a software embodiment, a non-
transitory computer readable medium, such as a semiconduc-
tor memory, a magnetic memory, or an optical memory may
be used to store instructions and may be executed by a pro-
cessor to implement the sequences shown in FIG. 2.

The graphics processing techniques described herein may
be implemented in various hardware architectures. For
example, graphics functionality may be integrated within a
chipset. Alternatively, a discrete graphics processor may be
used. As still another embodiment, the graphics functions
may be implemented by a general purpose processor, includ-
ing a multicore processor.

References throughout this specification to “one embodi-
ment” or “an embodiment” mean that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one implementation
encompassed within the present invention. Thus, appearances
of the phrase “one embodiment” or “in an embodiment” are
not necessarily referring to the same embodiment. Further-
more, the particular features, structures, or characteristics
may be instituted in other suitable forms other than the par-
ticular embodiment illustrated and all such forms may be
encompassed within the claims of the present application.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It is intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present invention.

What is claimed is:

1. A method comprising:

processing a group of render target cache line modifica-

tions;

after processing the group of modifications, determining

whether a modification message is unneeded for an
instance where a render target cache line was modified;
and

filtering an unneeded render target line modification mes-

sage.

2. The method of claim 1 including filtering modification
messages over a channel between a frame buffer compression
and a render cache.

3. The method of claim 1 including processing a group of
16 lines.

4. The method of claim 1 including setting a first bit in a
first array when a subspan request hits an unlit bit.

5. The method of claim 4 including setting a second bit in
a second array when a modification message has already been
sent.

6. The method of claim 5 including filtering a modification
message when the first and second bits are set.

7. A non-transitory computer readable medium storing
instructions to enable a computer to:

keep track of render target cache line modifications; and

use information about render target cache line modifica-

tions to filter an unneeded render target cache line modi-
fication message.

US 9,053,040 B2

5

8. The medium of claim 7 further storing instructions to
process a group of render target cache modifications.

9. The medium of claim 8 further storing instructions to
process a group of 16 lines.

10. The medium of claim 8 further storing instructions to
determine whether modification messages are needed for
every instance where a render target cache line was modified
after processing the group of modifications.

11. The medium of claim 7 further storing instructions to
filter modification messages over a channel between a frame
buffer compression and a render cache.

12. The medium of claim 7 further storing instructions to
set a first bit in a first array when a modification message has
already been sent.

13. The medium of claim 12 further storing instructions to
set a second bit in a second array when a subspan request hits
an unlit bit.

14. The medium of claim 13 further storing instructions to
filter a modification message when both the first and second
bits are set.

10

15

6

15. A processor comprising:

a render cache including a buffer to filter an unneeded

cache line modification message;

a frame buffer compression; and

a message channel between said frame buffer compression

and said render cache.

16. The processor of claim 15, said buffer to determine
when a subspan request hits an unlit bit.

17. The processor of claim 16, said buffer to determine
when a modify message has already been sent.

18. The processor of claim 17, said buffer to process a
plurality of cache line modification requests as a group.

19. The processor of claim 18 wherein said group includes
a plurality of subspans.

20. The processor of claim 15, said processor to send a
modification message for a group only when both a subspan
request hits an unlit bit and a modify message has not already
been sent once for the group.

#* #* #* #* #*

